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Abstract

In this paper, we present a technique for certifying
domain-specificproperties of code generated using pro-
gramsynthesistechnology. Programsynthesisisa maturing
technology that generatescodefroma high-level specifica-
tion in a particular domain. For acceptanceof the gen-
eratedcodein safety-criticalapplications,it mustbe thor-
oughlytested(an estimated80%of total software develop-
mentcostsin general). Weshowhowtheprogramsynthesis
systemAUTOFILTER canbeextendedto generatenot only
codebut alsoproofsthatpropertiesholdin thecode. Wetar-
getpropertiesthat aresufficientlycomplex that they cannot
beprovedautomaticallyfromthecodealone, but which can
beprovedusingdomainknowledge in thesynthesissystem
producingproofsthat canbeeasilycheckedbyan indepen-
dentverifier. Thistechniquehasthepotentialto reducethe
costsassociatedwith testinggeneratedcode.

1. Intr oduction

Guaranteeingpropertiesof codehaslong beena major
goalof theFormalMethodscommunityandhasbeentack-
ledusingstaticanalysis,modelcheckingandtheoremprov-
ing methods.Of these,staticanalysisis perhapsthe most
practicalandcommercialsystemssuchasPolySpace[13],
which is basedon abstractinterpretation,arenow emerg-
ing. Unfortunately, practicalapplicationsof static analy-
sis techniquesare limited to checkingprogramminglan-
guagelevel propertiessuchasillegal type conversions,in-
valid arithmeticoperations(e.g.,divisionby zero)andover-
flow/underflow. Whilst important,suchefforts do not ad-
dresstheissueof how to guaranteemorecomplex properties
andtraditionaltechniquesbasedon modelcheckingand/or
theoremproving arenot yet viable.

Another growth areain the last coupleof decadeshas
beencodegeneration.Althoughcommercialcodegenera-
tors aremostly limited to generatingstubcodesfrom high
levelmodels(e.g.,in UML), programsynthesissystemsthat
cangeneratefully executablecodefrom high level behav-

ioral specificationsarerapidly maturing(see,for example,
[16, 15]), in somecasesto the point of commercialization
(e.g.,SciNapse[1]). In programsynthesis,thereis potential
for automaticallyverifying moreinterestingpropertiesbe-
causeadditionalbackgroundinformation— from thespec-
ification andthe synthesisknowledgebase— is available.
The claim madein this paperis that by coupling together
programsynthesisandpropertyverification,it is possibleto
automaticallycertify thatapieceof generatedcodesatisfies
certaincomplex properties.We illustratethis claim usinga
techniqueto certify propertiesof navigationsoftware.

Themotivationfor thiscouplingis bestillustratedby ex-
ample.A commonsoftwaredevelopmenttaskin thespace-
craft navigationdomainis to designa systemthatcanesti-
matetheattitudeof a spacecraft.This is typically mission-
critical software becausean accurateattitude estimateis
necessaryfor thespacecraftcontrollerto tilt thecraft’s so-
lar panelstowardsthesun.Attitude estimatorsfor different
spacecraftaregenerallyvariationsona theme,andyet,cur-
rently, thereis very little softwarereusebetweenprojects.
Programsynthesisoffers the potential to reducedevelop-
mentcoststhroughrapidprototypingandarapidturnaround
cycle. However, for thesekindsof applications,only 20%
of effort is spentin softwaredevelopment,the other80%
beingspentonvalidationof thecode1, includingcodewalk-
throughs,formal andinformal testing. To reducethe 80%
developmentcosts,it is necessaryto providetechniquesthat
canavoid codeinspectionsor reducetesting. We believe
thatpropertyverificationcanreducetestingtimeand,more-
over, thatmany propertiescannotbeverifiedautomatically
withouttheapplicationof programsynthesis.Verifying that
a stateestimatorimplementationactuallyproducesa math-
ematicallyoptimal estimatecannotbe doneautomatically
usingthe codealone,becausethe codedoesnot reflectall
the informationneeded,suchasthe statisticalmodel. The
useof additionaldomainknowledgeandinformationfrom
thesynthesisprocessallowssuchverificationtasksto benot
only possible,but alsoautomated.

Our approachto this problem is to certify crucial
domain-specificpropertiesin safetyor missioncritical do-

1Personalcommunicationfrom theJetPropulsionLaboratory(JPL).
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Figure 1. Domain-specific cer tifier .

mains. A domain-specificsafetypolicy certifier was pre-
sentedin [8], for the domainof coordinateframeswhich
is also of crucial importanceto astronomicalnavigation.
Conceptually, a domain-specificcertifier consistsof three
maincomponents,asshown in Figure1. Theprogramming
languageand the abstractdomainare linked via domain-
specificabstractsymbolicevaluation.Many softwareprod-
ucts are developed for domains that are quite complex
andinvolvea significantbodyof mathematicalknowledge,
whichis notthecasefor thesemanticsof standardprogram-
ming languagesin which theseprogramsareusuallywrit-
ten. Consequently, appropriatedomain-specificabstrac-
tionsof programminglanguageconstructsinto domainsof
interestare requiredin order to perform domain-specific
analysisof software. Unlike in standardstaticanalysisof
programs,whereabstractionmeansgroupingvariousvalues
of the concretedomaininto an abstractone(suchas,each
real numberlarger than1 is “large positive”), in domain-
specificanalysistheremightbenorelationshipbetweenthe
concreteand the abstractdomains; for example, 2.7 can
be“meter”, or “second”,or “meter� Kg � second� � ”, or any
othermeasurementunit. Onewould, of course,like to cer-
tify softwareasautomaticallyaspossible,but this is very
rarelyfeasible(dueto intractabilityarguments)andclearly
closeto impossiblefor the complex domainpresentedin
this paper. Therefore,userinterventionis often neededto
insertdomain-specificknowledgeinto the programsto be
certified,usuallyunderthe form of codeannotations.The
certifierin thispaperneedsannotationsfor modelspecifica-
tions,assertions,andproof scripts.

Our domain-specific certification approach requires
more sophisticatedreasoningthan in approachesto date
for proof-carryingcode(PCC) [12]. The abstractdomain
specificationis muchricher thanmemorysafety, andver-
ifying the safetyof eachline of codecan requiretensof
thousandsof inferencesteps.The two specificationlevels,
for theprogramminglanguageandfor theabstractdomain,

are independentlyreusable;e.g.,oncean abstractdomain
hasbeenformulatedit canbeusedto certify programswrit-
tenin variousprogramminglanguages,andconversely, pro-
gramscanbe certifiedfor variousdomain-specificproper-
ties. ExtendedStaticChecker (ESC)[5, 14] is a tool that
finds programmingerrorsat compile time, suchas array
index boundserrors,nil dereferences,deadlocksandrace
conditions. The userof ESCannotatesthe programswith
specificationsin aprecondition-postconditionstyle(similar
to ours)whicharecheckedstaticallyusingatheoremprover
for untypedpredicatecalculuswith equality. Thetypesys-
temof thetargetprogramminglanguageis implementedin
untypedfirst-orderlogic. Theuseof ESCis thereforelim-
ited to programminglanguagedefinabletypesandto prop-
ertiesthatcanbeprovedautomaticallyusingESC’s internal
theoremprover. By allowing proofscriptsasannotationsin
theprogramsto certify, we practicallyextendthe usability
of our certifiersto whatever propertiesthat canbe proved.
However, somedomain-specificproofs can be very com-
plex, so, even if possiblein theory, we do not anticipate
thatourdomain-specificcertifierwill beusedindependently
from thesynthesisengine.

2. Domain-SpecificProgram Synthesis

Programsynthesisis the generationof codefrom high-
level, usuallydeclarative,specificationsof theexpectedbe-
havior of the code. For safety-criticalapplications,a key
concernwhenusingsynthesisis thecorrectnessof thegen-
eratedcode. Traditionalapproachesto this problemusea
theoremprovertoderiveacorrectnessproofandthecodesi-
multaneously. Unfortunately, suchapproachesrarelyscale
to realistic problems. Instead,successfulsynthesissys-
tems(e.g.,[1, 6]) favor a combinationof advancedknowl-
edgestructuringmechanisms,searchheuristicsand sym-
bolic solversto generate(usually)domain-specificcode,but
the correctnessof thecodemustbeverifiedeitherby vali-
datingthesynthesissystemor throughtesting.

The key to making programsynthesissuccessfulis in
choosinga domainin which thetypical problemsaresuffi-
ciently similar suchthat similar algorithmscanbe reused,
but also sufficiently different as to make coding by hand
non-trivial. Thedomainof stateestimationis oneexample
of thesedomainsandis alsoanextremelywidespreadappli-
cationareaimportantto NASA andothermajorauthorities
suchastheFAA.

AUTOFILTER is a programsynthesizerfor stateestima-
tion problems2. By stateestimation,we meanestimating
the stateof an object (e.g., its position, attitudeor noise

2AUTOFI LTER is a redesigned,much extended version of Am-
phion/NAV [16], implementedin Prolog. Amphion/NAV was basedon
the SNARK theoremprover which wasshown to be unsuitablefor more
complex problemsin this domainandsowasreplacedby Prolog.
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characteristics)basedon noisysensormeasurements.This
is an importantproblemfound in spacecraft,aircraft and
geophysicalapplications.The mostcommonway of solv-
ing a stateestimationproblemis to usea recursive update
algorithmknown astheKalmanFilter [2] which providesa
statisticallyoptimalestimateof a statebasedon noisysen-
sor measurements.The KalmanFilter requiresadditional
informationto make this estimate,namelya modelof the
dynamicsof the problemunderstudyanda modelof how
thesensormeasurementsrelateto thestate:

���
	����������������� (1)
���������������� � (2)!#" ����$� !%" � ��$��& (3)!#" �����(') $*,+.-0/214365879� (4)!#" � � � ') $�,+.-:/21;3<58= � (5)

� � is a vectorof statevariablesat time / . In a typical atti-
tudeestimationproblem,for example,thestatevector, ��� ,
mightcontainthreevariablesrepresentingrotationanglesof
a spacecraft.This is whatwill theKalmanFilter will esti-
mate.Equation(1) is theprocessmodelwhichdescribesthe
dynamicsof thethestateovertime3 — thestateattime /��#>
is obtainedby multiplying thestatetransitionmatrix � � by
thepreviousstate� � . Themodelis imperfect,however, as
representedby theadditionof theprocessnoisevector � � .
Equation(2) is themeasurementmodelandmodelsthere-
lationshipbetweenthemeasurementsandthestate.This is
necessarybecausethe stateoften cannotbe measureddi-
rectly. The measurementvector, � � , is relatedto the state
by matrix � � . � � representsthe noisein this relationship.
Simplifying KalmanFilter assumptionsstatethatall noises
mustbegaussianprocesseswith zeromeanandtheremust
beno correlationbetweenthenoiseover time (see(4) and
(5) where ? ' is the transposeof vector ? and +.-A@B5 is the
Kroneckerdeltafunctionwhich evaluatesto > when @%C&
and & otherwise. 79� and =D� are matriceswhich repre-
sentthenoisecharacteristicsof theprocessmodelnoiseand
measurementmodelnoise,respectively).

Given modelsof this form, a KalmanFilter canbe im-
plementedthat optimally estimatesthe statevector � � . A
schematicalgorithmfor this KalmanFilter is givenin Fig-
ure 2. The estimate, E� � , can be proved to be an opti-
mal estimateof the state, � � , in the sensethat the mean
squarederror (alsoknown asthe error covariancematrix),!#" -F���G1 E���H5I-F���G1 E���H5 ' $ , is minimized(seethe next sec-
tion). Any KalmanFilter shouldsatisfy this minimization
property. In Figure2, J � is theerrorcovariancematrix and
is updatedon eachiterationof the filter. J � givesan indi-
cationof theerror in thefilter estimatesandsois usedasa
checkwhetheror not thefilter is converging.

3theformulationgivenhereis a discreteone

As anexampleof how KalmanFilterswork in practice,
considera simple spacecraftattitudeestimationproblem.
Attitude is usuallymeasuredusinggyroscopes,but theper-
formanceof gyroscopesdegradesover time so the error in
thegyroscopesis correctedusingothermeasurements,e.g.,
from a startracker. In this formulation, the processequa-
tion (1) would modelhow the gyroscopesdegradeandthe
measurementequation(2) wouldmodeltherelationshipbe-
tweenthe startracker measurementsandthe threerotation
anglesthat form the state(in this case, � � would be the
identitymatrixbecausestartrackersmeasurerotationangles
directly). Fromthesemodels,a KalmanFilter implementa-
tion would produceanoptimalestimateof thecurrentatti-
tudeof the spacecraft,wheretheuncertaintiesin theprob-
lem (gyro degradation,startracker noise,etc.) have been
minimized.
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Figure 2. Kalman Filter Loop

AUTOFILTER takes as input a mathematicalspecifica-
tion including equations(1) - (5) but also descriptionsof
the noisecharacteristicsand filter parameters.From this
specification,it generatescodethatimplements(somevari-
ant of) the algorithm in Figure 2. In fact, AUTOFILTER

generatescodein our own intermediatelanguagewhich is
thentranslatedinto C++ or Matlab. In this paper, we only
considercodein theintermediatelanguage(seeFigure3 for
anexampleof its syntax). It shouldbenotedthatFigure2
representsjust oneof many possiblevariationsandconfig-
urationsof thefilter. In fact,theabundanceof variationsis
what makesthis domainideal for synthesis.Examplesof
othervariationsaretheextendedkalmanfilter, theinforma-
tion filter, theunscentedfilter.
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1. input xhatmin(0), pminus(0);
2. for(k,0,n) {
3. gain(k) := pminus(k) * mtrans(h(k)) * minv(h(k) * pminus(k) * mtrans(h(k)) + r(k));
4. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - (h(k) * xhatmin(k))));
5. p(k) := (id(n) - gain(k) * h(k)) * pminus(k);
6. xhatmin(k + 1) := phi(k) * xhat(k);
7. pminus(k + 1) := phi(k) * (p(k) * mtrans(phi(k))) + q(k);
8. }

Figure 3. Kalman Filter code calculating the best estimate incrementall y.

3. An Inf ormal Optimality Proof

In this paper, we describetechniquesfor certifying
domain-specificpropertiesof codegeneratedby AUTOFIL-
TER. In particular, we considerthe optimality proof intro-
ducedin theprevioussection— of theminimizationof the
meansquarederror. Despitetheapparentsimplicity of the
codein Figure3 that AUTOFILTER generates,theproof of
optimality is quitecomplex. Themainproof taskis to show
thatthevectorxhat(k) (correspondingto E� � in theprevious
section)is thebestestimate,undersimplifyingassumptions,
of thestatevector � � at time / . This is a standardproof in
stateestimationandis usuallypresentedin booksasan in-
formal mathematicalproof several pageslong. We sketch
the proof in this section,emphasizingthoseaspectswhich
areparticularlyrelevantfor automatingtheproof,especially
theassumptions.

The very first assumptionmadein all booksis that the
initial estimates, E� �s and J �s , are the bestprior estimate
andits errorcovariancematrix (that is,

!#" -F� s 1 E� �s 5I-t� s 1
E� �s 5 ' $ ), respectively. At a given time / , if E� �� is the best
prior estimatethen one can useequation(2) to conclude
that the mostprobablemeasurementerror is � � 1u� � E� �� .
Another assumptionis that “the bestestimateis a linear
combinationof thebestprior estimateandthemeasurement
error”. Formally, thissaysthatthebestestimateE� � is some-
wherein theimageof thefunction E���.-tvc5xwkzyrv�{A- E� �� ��v �-F���|1}�~� E� �� 5e5 , wherethecoefficient v is amatrixhaving as
many rowsas E� �� andasmany columnsasrows ��� . We are
looking for the v correspondingto the minimum error co-
variancematrix, J �c-tvc5\wk !#" -t����1 E���.-Fvc585I-F����1 E���.-Fv.5e5 ' $ ,
that is, thesolutionof thederivative of J �c-Fv.5 with respect
to v 4. In fact,differentiationof matrix functionsis a com-
plex field thatwepartially formalizedandwhichwecannot
coverhere,but it is worthmentioning,in orderfor thereader
to anticipatethe non-triviality of this proof, that the v giv-
ing the minimum of J � -Fv.5 is the solutionof the equation� - trace- J � -tvc585e5e� � v%�& , wherethetraceof a matrix is the
sum of the elementson its first diagonaland for a (stan-
dard) function � -tv ����� v � � � {A{o{k5 on the elementsof a matrix

4Technicallyspeaking,one shouldalso take the secondderivative to
show that the solution is indeeda minimum, but this stepis considered
“obvious” andconstantlyskippedby experts.

v , its derivative
� � � � v is the matrix - � � � � v )���� v )k��� vc5

having thesamedimensionsas v . Assumingthat J �� is the
error covarianceof the bestprior estimateof E� � , that is,!#" -t� � 1 E� �� 5g-t� � 1 E� �� 5 ' $ , thenafter calculations(which
formally involve severalthousandsof usesof basicproper-
ties of matricesanddifferentiationasarguedin Section5)
onegetsthesolution

� � w� J �� � '� -F� � J �� � '� ��= � 5 � � �

which is what line 3 of our programin Figure 3 calcu-
lates.Onecanalsocalculatethebestestimatenow, namely
E� � - � 5 , which is what line 4 of our programdoes,andalso
the error covariancematrix of the best estimate,namely
J � - � 5 , which is whatline 5 does;noticethatthelattercal-
culationsalsotakeseveralthousandsbasicproofsteps.

In order to completethe proof, oneneedsto show that
E� ��
	�� and J ��
	�� arethebestprior estimateandits errorco-
variancematrix at time /��u> , respectively. Theformerfol-
lows by anotherunanimouslyacceptedassumptionamong
experts,namelythat thebestprior estimateat thenext step
follows thestateequation(1) usingthebestestimateat the
currentstate,but wherethenoiseis ignored; theintuition for
this assumptionis that the currentbestestimateis random
anyway, so the noisewith mean0 canbe ignored. We do
thisin line 6. Thelattercanbealsoobtainedbycalculations,
alsotakingseveralthousandbasicproofsteps,transforming
theexpressionJ ��
	��  !#" -t� �I	�� 1 E� ��
	�� 5I-t� �
	�� 1 E� ��
	�� 5 ' $
by replacing E� �
	�� asin equation(1) and E� ��
	�� asin line 6.

4. A Framework for Formalizing the Proof

To generateand automaticallycertify proofs such as
the one given in the previous section, we need to for-
malize the domain knowledge, which includesmatrices,
functions on matrices,and differentiation. We first dis-
cuss the formal languagethat we chose for this pur-
pose together with its underlying logic. The reader
can download our abstract domain formalization from
http://ase.arc.nasa.gov/grosu/download/kalman.
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4.1. Maude and Membership Equational Logic

Maude[4] is a freely distributedhigh-performanceex-
ecutablespecificationsystemin the OBJ [7] family, sup-
portingbothrewriting logic [9] andmembershipequational
logic [10]. Becauseof its efficient rewriting engineand
becauseof its metalanguageand modularizationfeatures,
Maudeis an excellent tool to develop executableenviron-
mentsfor variouslogics, modelsof computation,theorem
provers,andevenprogramminglanguages.

Membershipequationallogic (MEL) [10] is a variant
of equationallogic which, in additionto atomicequalities�  �6�

, allows atomicmemberships
� w�� statingthat the

term
�

hasthesort � . In Maude,conditionalequationsand
membershipsaredeclaredwith thekeywordsceq andcmb,
respectively, while the unconditionaloneswith eq andmb.
For example,theconditionalmembershipcmb X/Y : Real

if Y=/=0 statesthat for any realsX andY, X/Y is a real,or
hasthe sort Real, if Y is non-zero. Sortsare groupedin
kindsandoperationsaredefinedonly on kinds,but Maude
providesconvenientsyntacticsugarconventions.For exam-
ple, a subsortdeclarationsubsort Nat < Real is syntac-
tic sugarfor the membershipcmb X : Real if X : Nat,
theoperationdeclarationop + : Real Real -> Real is
syntacticsugarfor5 cmb X+Y : Real if X : Real and Y

: Real, and[Real] is a shorthandfor the kind containing
the sort Real; the operationdeclaration / : Real Real

-> [Real] saysthata quotienttermmight not have a sort,
i.e., it might be undefinedin a partial algebraicterminol-
ogy. Thereis an automatictranslationfrom partial equa-
tional logic, or morepreciselyfrom its moregeneralvariant
called partial membership equationallogic (PMEL), into
MEL exploredin detail in [10, 11]. Maude’s implicit sup-
port for partiality was a major factor in choosingMaude
asa logic and implementationenginefor our certification
tools,becauseall thespecificationsof abstractdomainsthat
we encounteredso far involve partial operators.However,
we warn the readerthat Maude doesnot explicitly sup-
port PMEL, i.e., it is a total MEL engine6. That means
that, for exampleif onedeclaresthe equationeq X/(Y/Z)

= (X*Z)/Y thenoneshouldnot expectMaudeto implicitly
prove that Y/Z is definedbeforeapplying the equation;it
is the user’s responsibilityto testthis, i.e., to usean equa-
tion of theform ceq X/(Y/Z) = (X*Z)/Y if Y/Z : Real.
Sincewe usepartial specificationsoften andsinceit is so
easyto omit suchmembershipchecks,we have developed
anautomaticcriterionthatcheckswhethera MEL theoryis
duplex, i.e., if it canbesafelyregardedasa specificationin
PMEL [11]. Our200axiomabstractdomainpresentednext
passedtheduplex criterion,sowe know thatMaude’s total

5Togetherwith anappropriateoperationdeclarationonkinds.
6We arenot awareof any tool providing explicit executionalsupport

for partialequationallogics.

reasoningis soundfor our domain.

4.2. Matrices

The main problem in automatingequationalproofs is
thatequationalaxiomscanbeusedbothforwardsandback-
wards,so rewriting aloneis not sufficient and searchcan
quickly becomeintractable.Equationalreasoningwith ma-
tricesis extensively usedin all stateestimationoptimality
proofs that we are aware of. In fact, most of the proof
stepsin our scripts and all our lemmasare equational.
What is lessobvious is thatmostof theoperationsandax-
ioms/lemmasin matrix theoryarepartial. For example,ad-
dition is definediff the two matriceshave thesamedimen-
sions,multiplicationis definediff thenumberof columnsof
thefirst matrixequalsthenumberof rowsof thesecond,and
thecommutativity andassociativity of additionhold trueif f
the matricesinvolvedhave the samedimensions.It wasa
big benefit,if not thebiggest,thatMaudeprovidedsupport
for partiality, thusallowing usto compactlyspecifymatrix
theoryanddo partialproofs. Thepartial infix operationof
multiplicationandthetotal transposeoperationaredefined
asfollows:

op _*_ : Matrix Matrix -> [Matrix] .
op mtrans : Matrix -> Matrix .

In orderto definetheirsemanticsandproperties,weneed
two (total)operationsthatgivethenumbersof columnsand
rows of a matrix that we denotec and r, respectively, of
arity Matrix -> Nat. Now we canexpressdefinednessof
multiplication togetherwith appropriateconditionalequa-
tionscomputingthenew columnsandrows:

cmb P * Q : Matrix if c(P) == r(Q) .
ceq c(P * Q) = c(Q) if P * Q : Matrix .
ceq r(P * Q) = r(P) if P * Q : Matrix .

Axioms relatingvariousoperatorson matricesarealso
needed,suchas:

ceq mtrans(P * Q) = mtrans(Q) * mtrans(P)
if P * Q : Matrix .

togetherwith morethan50others,mostof themconditional
andinvolving memberships.

4.3. Functionson Matrices

Onestepin optimality proofsis statingthat thebestes-
timateof theactualstateis a linearcombinationof thebest
prior estimateandthemeasurementerror. Thecoefficients
of this linear dependency is calculatedsuchthat the error
covariancematrix is minimized. Therefore,beforethe op-
timal coefficient is calculated,and in order to calculateit,
the best estimatevector is regardedas a function of the
form yrv�{A-e� prior estimate� �uv � � measurementerror � 5 . In
orderfor this function to be well defined,v mustbea ma-
trix having appropriatedimensionsas given in Section3.
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Hence,we needto formally definefunctionson matrices
togetherwith their properties.We do it by declaringnew
sorts,MatrixVar andMatrixFun, thefirst beingasubsortof
Matrix, togetherwith operationsfor definingfunctionsand
for applyingthem,respectively:

op /\_._ : MatrixVar Matrix -> MatrixFun .
op _ _ : MatrixFun Matrix -> [Matrix] .

Appropriate(conditional)axiomsfor functionsarespec-
ified, alsotakinginto accountpartiality, suchas:

ceq (/\y.(P+Q))(X) = (/\y.P)(X) + (/\y.Q)(X)
if P+Q : Matrix .

ceq (/\y.y)(X) = X
if c(X) == c(y) and r(X) == r(y) .

amongmany others.

4.4. Differ entiation

If J is asquarematrixthentrace- J 5 is thesumof all J ’s
elementsonthemaindiagonal.Axiomatizationof functions
onmatriceswith their derivativescanbearbitrarilycompli-
cated;ourapproachis top-down, i.e.,wefirst defineproper-
tiesbyneed, usethem,andthenprovethemfrom morebasic
propertieswhenpossible. For example,the only property
thatweusedsofar linking optimalityof estimatesto differ-
entiationis thata matrix

�
minimizesa function yrv�{ J if f- � - �<� ?��I� -:yrv�{ J 585�� � vc5I- � 5\�& . For thatreason,in orderto

avoid going into deepaxiomatizabilityof mathematics,we
have just defineda “derived” operation

op d(trace_)/d_ : MatrixFun MatrixVar
-> MatrixFun .

whichgivesdirectly thederivativeof thetraceof afunction,
anddeclaredsomepropertiesof it, suchasthe conditional
equation

ceq d(trace(/\Y.(Y*P)))/d(Y) = /\Y.mtrans(P)
if Y*P : Matrix and r(Y) == c(P) .

stating that the derivative of the function yrv�{A-Fv ��J 5 isycv�{ J ' whenever v �~J is a well-definedsquarematrix.
One could, of course,prove this property from more ba-
sic propertiesof traces,functionsanddifferentiations,but
onewould needto adda significantbody of mathematical
knowledgeto thesystem.Wewill eventuallydoit whenour
synthesisandcertificationsystemsbecomemorestable,but
for now we preferto just give theseprovablepropertiesas
axiomsof theabstractdomain.

5. A Formal Optimality Proof

In this sectionwe explain how we formalizedthe infor-
mal proof in Section3, usingtheaxiomatizationof theab-
stractdomainin Section4. This formalizationwas done
manually, usinganinteractivetheoremprover implemented
in Maudeandpresentedbelow. This proof wasa painful

and time consumingtask, not only becauseof its mathe-
maticalcomplexity, but alsobecausetheaxiomatizationof
theabstractdomainchangedoftenasweunderstoodthedo-
main and the requirementsfor our proofs better. We are
currentlyworking on anotherproof of optimality, for infor-
mationfilters [2], which follows the samepattern.Oneof
themajorbenefitsof synthesizingcertifiablycorrectcodeis
thatsuchproofswill bedoneby trainedexpertsonly once,
storedin a genericform in the synthesisengine,andthen
reused/instantiatedmany times in the generatedannotated
programs.

5.1. The ITP Tool

The ITP tool [3] is an experimentalinteractive induc-
tive theoremprover implementedby metalevel program-
ming andrewriting in Maude. The input of ITP is a pair
specification |- sentence, calledagoal. If thesentence
canbe automaticallyproved by applying the equalitiesin
the specificationas rewriting rules then the usergets the
desiredq.e.d. message;otherwise,somesimplified form
of thesentenceto beprovedis returnedandtheuseris ex-
pectedto provide hints,suchasfor exampleapply -distr

to 1.2 at 2.2.3 which saysthat the distributivity axiom
shouldbe appliedbackwardsto proof tasknumber1.2 at
position2.2.3. Simplificationsby rewriting areautomati-
cally doneaftereachhint. We have usedhundredsof hints
in our optimality proofspresentednext. Many new proof
taskscanbe generatedduring a proof dueto lemmaintro-
ductionand/orinduction.Therearerigorousconventionsin
ITP for labellingtheaxiomsandtheproof tasks,andalsoin
accessingpositionsin terms,but thesearenot importantfor
this presentationandmaychangein thenearfutureasITP
improves,sowe omit them.

5.2. Specifyingthe Statistical Model

In orderto reasonaboutthe codein Figure3, onemust
know wherethe matricesz, h, etc., comefrom and what
is their abstractmeaning,or in otherwords,oneneedsthe
specificationof this particularKalmanFilter togetherwith
all its assumptions. Theseareneededin addition to theab-
stractdomainknowledgein Section4. Therefore,thevery
first stepis to expandtheabstractdomainwith this Kalman
Filter’s specification,that we denoteSPECKF, which de-
claresall the matricesandvectorsinvolved togetherwith
their dimensions,suchas

ops x phi w : MachineInt -> Matrix .
ops z h v : MachineInt -> Matrix .
ops r q : MachineInt -> Matrix .
ops n m k : -> MachineInt .
var K : MachineInt .
eq r(x(K)) = n . eq c(x(K)) = 1 .
eq r(phi(K)) = n . eq c(phi(K)) = n .
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eq r(w(K)) = n . eq c(w(K)) = 1 .
eq r(z(K)) = m . eq c(z(K)) = 1 .
eq r(h(K)) = m . eq c(h(K)) = n .
eq r(v(K)) = m . eq c(v(K)) = 1 .
...

aswell asmodelequations/assumptions,suchas

eq x(K + 1) = (phi(K) * x(K)) + w(K) .
eq z(K) = (h(K) * x(K)) + v(K) .
eq r(K) = E[v(K) * mtrans(v(K))] .
eq q(K) = E[w(K) * mtrans(w(K))] .
...

Other axioms/assumptionsthat we do not formalize here
dueto spacelimitation includeindependenceof noise,and
thefactthatthebestprior estimateattimek + 1 is theprod-
uct betweenphi(k) andthebestestimatecalculatedprevi-
ously at stepk. One major problemthat we encountered
while developingour proofs was that theseand other as-
sumptionsnot mentionedhereareso well (andeasily)ac-
ceptedby expertsthat they don’t even make their useex-
plicit in their informal proofs; this wasof courseunavoid-
ablein thecontext of formal proving, sowe hadto declare
themexplicitly asaxioms.

This specification has about 35 axioms/assumptions
and the interestedreadercan download it from the URL
http://ase.arc.nasa.gov/grosu/download/kalman. A
majoradvantageof our approachto combinesynthesisand
certificationis thatspecificationscanbegeneratedautomat-
ically from the problemdescriptioninput to the synthesis
engine.

5.3. Modularizing the Proof

In order to machinecheckthe proof of optimality, the
proof mustbe decomposedand linked to the actualcode.
This is doneby addingthespecificationaboveat thebegin-
ning of thecodeandaddingappropriateformal statements,
or assertions,asannotationsbetweeninstructions,so that
one can prove the next assertionfrom the previous ones
andthepreviouscode.Proofsarealsoaddedasannotations
whereneeded.Notice thatby “proof” we heremeana se-
riesof hintsthat ITP usesto guidetheproof. Theresulting
annotatedcodeis shown in Figure4, wherewereplacedthe
moreformal (andlonger)assertionsby English. Theproof
assertionsin Figure4 shouldbereadasfollows: proof as-
sertion� is aproofof assertion� in its currentenvironment.

The bestwe canassertbetweeninstructions1 and2 is
thatxhatmin(0) andpminus(0) areinitially the bestprior
estimateanderrorcovariancematrix, respectively. This as-
sertionis anassumptionin SPECKF andsocanbe immedi-
atelychecked.

Between 2 and 3 we assert that xhatmin(k) and
pminus(k) arethebestprior estimateanderrorcovariance
matrix, respectively. This is obvious for the first iteration

of the loop, but needsto beprovedfor theotheriterations.
Therefore,wedo animplicit proof by induction.

Theassertionafter line 3 is thatgain(k) minimizesthe
covariancematrix of theerrorbetweenthereal (unknown)
stateof thesystemandalinearcombinationof thebestprior
estimateandour currentmeasurementerror. This formal
assertionis rathertechnicalandtakesa few linesof Maude
code,soit is notworthshowing it here.It was,however, the
partof theproof thatwasthemostdifficult to formalize.Its
proof scriptcontains7 lemmasandit has142steps,thatis,
thereare142usesof labeled(conditional)sentences.This
meansthatthereareat least142placeswhereanautomatic
equationaltheoremprover would try both directionsof an
equation— � �<� � combinations. Thesenumbersmake us
stronglybelieve that thereis almostno chanceto get these
proofsautomatically. Note that therearemany many more
unlabeledrewritings appliedin between,mostof themto
prove theconditionsof others.Taking into accountthe 15
secondsthatITP spentto checkthe142linesof proofscript,
thespeedof Maude(3 million rewritespersecond)andpes-
simisticallyassumingthatits ITP slowsit down 1000times,
thenwe predictthatthereareat least45,000usesof theax-
iomsin theabstractdomainandSPECKF in this proof.

Theassertionbetweenlines4 and5 saysthatxhat(k) is
thebestestimateof theactualstateandfollowsnow imme-
diately from the previousassertion.After line 5, however,
we have theassertionthatp(k) is theerrorcovariancema-
trix of the bestestimateandits proof needs4 lemmasand
hasabout110 proof script steps. After line 6, due to an
assumptionin SPECKF, we canassertandeasilyshow that
xhatmin(k+1) is thebestprior estimateat time k+1, which
togetherwith theinstructionon line 7 impliestheassertion
betweenlines2 and3, sowe have completedour proof of
optimalityof thecodein Figure3 by induction.It took ITP
a bit more than30 secondsto checkall this proof, which
makesuspredictat least100,000of usesof axioms.

6. SynthesizingAnnotated Kalman Filters

AUTOFILTER synthesizescodeby exhaustive, layered
applicationof schemas. A schemais a programtemplate
with openslotsanda setof applicability conditions. The
slotsarefilled in with codefragmentsby thesynthesissys-
tem calling the schemasrecursively. The conditionscon-
strainhow theslotscanbefilled — they mustbeprovento
hold in thegivenspecificationbeforetheschemacanbeap-
plied. Someof theschemascontaincallsto symbolicequa-
tion solvers,otherscontainentireskeletonsof statisticalor
numericalalgorithms.By recursively invokingschemasand
composingthe resultingcodefragments,AUTOFILTER is
ableto automaticallysynthesizeprogramsof considerable
sizeandinternalcomplexity.

Figure5 givesan abstractionof a top-level schemafor
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/* Specification of the state estimation problem
... about 35 axioms/assumptions in Maude */

1. input xhatmin(0), pminus(0);
/* Assertion 1: (in English)

xhatmin(0) and pminus(0) are the best prior estimate and its error covariance matrix */
2. for(k,0,n) {

/* Assertion 2: (in English)
xhatmin(k) and pminus(k) are the best prior estimate and its error covariance matrix */

3. gain(k) := pminus(k) * mtrans(h(k)) * minv(h(k) * pminus(k) * mtrans(h(k)) + r(k));
/* Proof assertion 3: (142 ITP hints including those below)

(lem (l(pminus(k))) = (n) to (1) .)
(apply assertion-1-2 to (1 . 0 . 1) at (1) .)
... the 138 other hints are omitted ...
(apply pminuskmtrans to (1) at (1 . 2 . 1 . 1 . 1) .)
(apply comm+ to (1) at (1 . 2) .) */

/* Assertion 3: (in English)
gain(k) minimizes the error covariance matrix */

4. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - (h(k) * xhatmin(k))));
/* Proof assertion 4: (... omitted) */
/* Assertion 4: (the main goal)

xhat(k) is the best estimate */
5. p(k) := (id(n) - gain(k) * h(k)) * pminus(k);

/* Proof assertion 5: (... omitted; 110 ITP hints) */
/* Assertion 5:

p(k) error covariance matrix of xhat(k) */
6. xhatmin(k + 1) := phi(k) * xhat(k);

/* Proof assertion 6: (... omitted) */
/* Assertion 6:

xhatmin(k + 1) best prior estimate at time k + 1 */
7. pminus(k + 1) := phi(k) * (p(k) * mtrans(phi(k))) + q(k);

/* Proof assertion 2: (... omitted; 31 ITP hints) */
8. }

Figure 4. Annotated Kalman Filter code calculating the best estimate .

generatingKalmanFilter code. ��?B�}� -0�25 areschemaslots.
They arefilled in by anassignmentof theform � ��?B�}� wk
{g{g{ . In somecases,the top-level schemawill fill slotsdi-
rectly. In othercases,theslotsarefilled by recursively in-
voking otherschemas.Thenumbersin squareparentheses
referto line numbersin Figure3. Thetop-levelschemagen-
eratesa templatefor eachline in Figure3 which is filled in
by recursively invoking otherschemas.Note that this can
resultin codethat is substantiallydifferentfrom thatgiven
in Figure3 but still implements(somevariantof) a Kalman
Filter. For example,theslot for propagateEstimate would
befilled in differentlyfor a standardKalmanFilter thanfor
aninformationfilter or anextendedKalmanFilter. Slotsin
Figure5 without associatedline numbersarenot important
for the purposesof this paperbut generallyareconcerned
with book-keepingtaskssuchasstoringtheestimatesin an
outputvector, updatingtime-varyingmatriceson eachiter-
ation,etc.

Theschemarecursively invokesotherschemasto fill in
its slots, e.g., to generatethe propagateEstimate code.
For certificationpurposes,the schemamust also generate
a proof that the schemais correct— in this case,the opti-
mality proof in Figure4. In orderto generatethisproof, the
schemasare extendedto generatealso the assertionsand

proof assertionsfrom Figure 4. In this way, eachline of
codegeneratedcomesoptionally with an assertionand/or
theproof thattheassertionholds.Themechanicsof adding
the proofs to the schemasis mostly trivial. Eachline of
codegeneratedis, in our intermediatelanguage,of theform
codefragment(Code, Attributes)where ��� � � is the actual
codeand � �<�<� 36 ^¡ � � � is a list of artifactsthat is generated
alongwith the code. Attributescanbe commentsthat ex-
plain the line of codeor they can be assertionsor proof
assertions.Currently, the proof assertionsin the attributes
are ITP proof scripts, i.e., a sequenceof applicationsof
axioms/lemmas(alongwith variablesubstitutions).These
proofs typically are very complex and involve the explo-
ration of a large searchspace.The hints in the high-level
proof scriptsalways occur at a choicepoint in the proof.
Hence,given the proof script, it is possibleto reconstruct
theentireproof without theneedfor any search.Thecode
in Figure4 containingall the annotationscanbe found at
http://ase.arc.nasa.gov/grosu/download/kalman. The
reconstructionof the entireproof is currently donein the
certifier, but it could just aseasilyhave beengivenexplic-
itly in theschema.An approachthatweintendto investigate
soonis to storetheseproofscriptstogetherwith theschemas
in the AUTOFILTER knowledgebase. The full proof can
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/* applicability conditions */
... process noise is Gaussian
... measurement noise is Gaussian
... process/measurement noise are independent

...
/* set up template */
result := kalman(local(%),

initialize(%),
loop(%),
postloop(%))),

...
%loop := for(pvar,0,n, // [2]

update(zupdate(%),
phiupdate(%),
hupdate(%),
gain(%), // [3]
estimateUpdate(%), // [4]
covarUpdate(%), // [5]
storeOutput(%),
propagateEstimate(%), // [6]
propagateCovar(%))) // [7]

/* fill in some slots */
...

/* recursively invoke schemas to fill
remaining slots */

...

Figure 5. (Part of) a Kalman Filter schema

thenbereconstructedat synthesistime andtheentireproof
canbe addedto the code(ratherthan just the ITP hints).
This would allow thecertifier to beasminimal aspossible
— it would merelybe a proof checker that canbe verified
ratherthanamorecomplex hint interpreterasnow.

7. Certifying Annotated Kalman Filters

Thereare various typesand levels of certification, in-
cluding testingandhumancodereview. In this paperwe
addresscertifying conformanceof programsto domain-
specificproperties. The generalproblemis known to be
intractable,but by usingprogramsynthesisto annotatecode
with assertionsandproofscripts,complex propertiescanbe
certifiedautomatically. Our long termgoalis to developan
automatedstateestimationcertifierwhich:¢ is simple,sothatit canbeeasilyvalidatedby ordinary

codereviewers;¢ is general,soit workson a largevarietyof programs;¢ reducesthe amountof domain-specificknowledgeto
betrustedto a few easilyreadableproperties,sothatit
canbevalidatedby domainexperts;¢ is independentfrom thedomain-specificsynthesissys-
tem, so that the likelihoodthat the two systemshave
common abstractdomain errors is minimized and
thereforecanbesafelyusedtogether.

Therearesensibletrade-offs betweenthesedesiredfea-
tures. For example,if the certifier usesa specializedthe-

oremprover then the synthesisenginecangeneratefewer
andsimplerannotations,but the certifier is itself complex
andthe certificationprocesscantake a long time. On the
other hand, if the certifier is a simple proof checker then
certificationcanbedonerelatively quickly andcanbemore
easily acceptedeven by skeptical users,but one needsto
generatevery detailedproofsof correctnesstogetherwith
thecode.Thecertifierdescribednext usesacombinationof
theoremproving andproof checking.

OurcurrentcertifiertakesasinputaPMEL specification
of the abstractdomainandan annotatedprogramand re-
turns “yes” or “no”. It extractsproof taskstogetherwith
their proof scripts from the annotatedprogram,and then
callsMaude’sITP tool to validatethem.Theproof tasksare
generatedfrom bothannotationsandcode,while theproof
scriptsareextractedfrom annotations.It answers“yes” if
andonly if all theproof scriptsarevalid for theproof tasks
thatit generates.Therefore,like in proofcarryingcode,the
code,the assertionsand the proofsare interdependent,so
onecannotmaliciouslymodify eitherof them.

The stateestimationcertifier is very restrictive at this
stage,but this is acceptablebecausewe only useit on pro-
gramssynthesizedwith AUTOFILTER. It only acceptspro-
gramswritten in a genericmatrix-assignmentbasedpro-
gramminglanguagelike the onein Figure3; additionally,
thoseprogramsare not allowed to redefinevariables(ex-
cepttheloop counter)andmustconsistof exactly oneloop
which iteratively calculatesthe bestestimate. Thesepro-
gramsmust be annotatedlike in Figure 4, i.e., they must
startwith an annotationcontainingthe specificationof the
Kalman filter for which the subsequentcode is claimed,
andthencontainlinesof code,proof scriptsandassertions.
All the annotationsusedirectly Maudeand/or ITP nota-
tion. Eachassertionthat cannotbe proved by straightfor-
wardrewriting shouldcomewith its proofscriptannotation.
This simpleapproachworks becauseour synthesizedstate
estimationprogramsarenot concurrent.

Thecertifierworksasfollows. It firstextendstheabstract
domainspecificationwith the specificationof the program
(extractedfrom thebeginningof theprogram).Thenit fol-
lows the stepsof a proof by mathematicalinductionon k,
theloop index. Moreprecisely, it first proofchecksthefirst
assertionin thecodein which it replacesk by 0. Thenit in-
crementallyvisits eachline of codein the loop, addingthe
assignmentsto thespecificationasordinaryMEL equations
andproof checkingtheassertions.In orderto proof check
anassertion,it callstheITP tool with thecurrentspecifica-
tion, theassertion,andtheproofscriptprovidedin thecode
asannotation.At the endof the loop, it alsoproof checks
thefirst assertionin theloop in whichk is replacedby k+1.

Therefore,our currentcertifier simulatesthe execution
of the codemodifying its environment(specification)and
checkinga providedproof whenever anassertionis found.
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Assumingthat the abstractdomainand the Kalman filter
arecorrectlyspecified,thenfor any annotatedprogramas
above our certifier returns “yes” if and only if the pro-
gram calculatesthe best estimateat eachiteration. No-
tice that the certifier was specifically designedto be to-
tally independentfrom the synthesisengine. The proofs
andtheannotationsareordersof magnitudelargerthanthe
realcode,but fortunately, they canbeautomaticallygener-
atedby the synthesisengineoncegenericproofsarepro-
videdwith theprogramschemas.The ITP proof tasksand
their proof scriptsgeneratedautomaticallyby our current
certifier (about2300 lines of Maude/ITP)can be seenat
http://ase.arc.nasa.gov/grosu/download/kalman.

8. Conclusionsand Future Work

In this paper, we have shown how to extend program
synthesissystemsto generatenot only codebut alsoproofs
of propertiesof that code. This work was carriedout in
thecontext of AUTOFILTER, a synthesizerof stateestima-
tion programs,which wasaugmentedto outputa proof that
the codeimplementsan optimal estimator. This proof is a
highly complex proof that cannotbe provedautomatically
but by encodingthe key stepsof the proof in AUTOFIL-
TER’sknowledgebase,it is ableto generateaproof thatcan
easilybecheckedby an independentcertifier. Suchresults
will encouragetheacceptanceof codegeneratorsin safety-
critical domainssincethegeneratorswill producenot only
thecodebut alsocertificatesthatthecodeis correct.

Currently, our work hasfocussedon formalizingthedo-
mainknowledgerequiredfor thecertificationproofsandon
generatingtheproof for the standardKalmanFilter. How-
ever, sinceAUTOFILTER generatesa wide rangeof varia-
tionsof KalmanFilter implementations,it mustalsogener-
atea wide rangeof proofs. Our hopeis that the structure
in theseproofsis sufficiently similar suchthattheeffort re-
quiredin formalizing the proofsandencodingthemin the
knowledgebaseis manageable.We are currently testing
out this hypothesisby consideringKalmanFilter variations
suchastheinformationfilter.

The certifier usedin the work describedis itself a sub-
stantialprogram,including the Maudesystemandthe ITP
tool. MaudeandITP areusedboth to generatethe proofs
andto checkthem. For practicalpurposes,a certifiermust
beassimpleaspossible.Certificationauthoritieswill only
trusta certificationtool if it hasbeenformally verified,and
henceit must be small. This meansthat whilst Maude
andITP aregoodgenericenginesfor developingdomain-
specificproofsscriptsof individualschemas,thefinal prod-
uctwill mostlikely incorporateakernelcertifierwith amin-
imal knowledgebaseandminimalproving technology.
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